О гидравлике

О Гидравлике

О Гидравлике

Исторически гидравлика есть учение о движении жидкостей, приноровленное к практическим целям. Искусство управлять движением вод в естественных и искусственных руслах и резервуарах, а также пользоваться течением воды и ветром для производства работы существовало в глубокой древности, но название гидравлики было в старину присвоено искусству устраивать водяные органы (ΰδραυλις значит звучащая вода, от слов ΰδωρ — вода, αύλός — флейта).

Первое сочинение о движении текущих вод появилось в Риме в 1638-м году и написано Бенедиктом Кастелли, учеником Галилея, а первое открытие, послужившее исходным основанием дальнейшего развития гидравлики и гидродинамики, была найденная Торричелли зависимость между скоростью истечения жидкости из тонкостенного отверстия в сосуде и высотой столба жидкости над отверстием. Эта зависимость была найдена опытным путем и открытие опубликовано в 1644 году.

Первые попытки доказать закон Торричелли теоретически были делаемы Вариньоном в 1667 году и Ньютоном в 1687 и 1712 годах; но только позднее, а именно в 1738 году, была найдена Даниилом Бернулли общая теорема гидравлики установившегося течения, из которой закон Торричелли получается как следствие.

Торричелли, Эванджелиста
Торричелли Эванджелиста(Википедия)

В отличие от гидромеханики, гидравлика характеризуется особым подходом к изучению явлений течения жидкостей: она устанавливает приближённые зависимости, ограничиваясь во многих случаях рассмотрением одноразмерного движения, широко используя при этом эксперимент, как в лабораторных, так и в натурных условиях.

Некоторые принципы гидростатики были установлены ещё Архимедом, возникновение гидродинамики также относится к античному периоду, однако формирование гидравлики как науки начинается с середины XV века, когда Леонардо да Винчи лабораторными опытами положил начало экспериментальному методу в гидравлике. В XVI—XVII веках С. Стевин, Г. Галилей и Б. Паскаль разработали основы гидростатики как науки, а Э. Торричелли дал известную формулу для скорости жидкости, вытекающей из отверстия.

В дальнейшем И. Ньютон высказал основные положения о внутреннем трении в жидкостях. В XVIII веке Д. Бернулли и Л. Эйлер разработали общие уравнения движения идеальной жидкости, послужившие основой для дальнейшего развития гидромеханики и гидравлики.

Однако применение этих уравнений (так же как и предложенных несколько позже уравнений движения вязкой жидкости) для решения практических задач привело к удовлетворительным результатам лишь в немногих случаях, в связи с этим с конца XVIII века многие учёные и инженеры (А. Шези, А. Дарси, А. Базен, Ю. Вейсбах и др.) опытным путём изучали движение воды в различных частных случаях, в результате чего наука обогатилась значительным числом эмпирических формул. Практическая гидравлика всё более отдалялась от теоретической гидродинамики. Сближение между ними наметилось лишь к концу XIX века в результате формирования новых взглядов на движение жидкости, основанных на исследовании структуры потока.

Особо заслуживают упоминания работы О. Рейнольдса, позволившие глубже проникнуть в сложный процесс течения реальной жидкости и в физическую природу гидравлических сопротивлений и положившие начало учению о турбулентном движении. Впоследствии это учение, благодаря исследованиям Л. Прандтля и Т. Кармана, завершилось созданием полуэмпирических теорий турбулентности, получивших широкое практическое применение.

К этому же периоду относятся исследования Н. Е. Жуковского, из которых для гидравлики наибольшее значение имели работы о гидравлическом ударе и о движении грунтовых вод.

Гидравлический удар
Гидравлический удар(Википедия)

Гидравлика широко использует теоретические положения механики и данные экспериментов. В прошлом гидравлика носила чисто экспериментальный и прикладной характер, в последнее время её теоретические основы получили значительное развитие, это способствовало сближению её с гидромеханикой. Гидравлика решает многочисленные инженерные задачи, рассматривает многие вопросы гидрологии, в частности, законы движения речных потоков, перемещения ими наносов, льда и шуги, процессы формирования русла и т. д. Этот комплекс вопросов объединяется речной гидравликой (динамикой русловых потоков), которую можно рассматривать как самостоятельный раздел гидравлики.

axocne49qpu
По отношению к гидромеханике гидравлика выступает как инженерное направление, получающее решение многих задач о движении жидкости на основе сочетания эмпирических зависимостей, установленных опытным путём, с теоретическими выводами гидромеханики.

В гидравлике рассматриваются также движение наносов в открытых потоках и пульпы в трубах, методы гидравлических измерений, моделирование гидравлических явлений и некоторые др. вопросы. Существенно важные для расчёта гидротехнических сооружений вопросы гидравлики — неравномерное и неустановившееся движение в открытых руслах и трубах, течение с переменным расходом, фильтрация и др. — иногда объединяют под общим названием «инженерная гидравлика», или «гидравлика сооружений».

Предмет Г. весьма обширен. Он обнимает собой вопросы об истечении жидкости из сосудов через отверстия с насадками разного вида или без оных, о течении жидкости через водосливы, по трубам, по каналам и рекам, вопросы о давлении текущей струи или потока на препятствия или погруженные тела, вопросы о действии гидравлических приемников, насосов, водоподъемных механизмов, и т. д. Таким образом, круг вопросов, охватываемых гидравликой, действительно весьма обширен, и её законы в той или иной мере находят применение почти во всех областях инженерной деятельности, особенно в гидротехнике, мелиорации, водоснабжении, канализации, теплогазоснабжении, гидромеханизации, гидроэнергетике, водном транспорте и др.

Ссылки по теме

Гидравлический пресс(Википедия)

Гидравлический привод(Википедия)

Гидрофор(Википедия)

Гидроаккумулятор(Википедия)

Просмотры: 200

Добавить комментарий